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ABSTRACT
Purpose Tuberculosis treatments need to be shorter and over-
come drug resistance. Our previous large scale phenotypic high-
throughput screening against Mycobacterium tuberculosis (Mtb) has
identified 737 active compounds and thousands that are inactive.
We have used this data for building computational models as an
approach to minimize the number of compounds tested.
Methods A cheminformatics clustering approach followed by
Bayesian machine learning models (based on publicly available
Mtb screening data) was used to illustrate that application of these
models for screening set selections can enrich the hit rate.
Results In order to explore chemical diversity around active cluster
scaffolds of the dose–response hits obtained from our previousMtb
screens a set of 1924 commercially available molecules have been
selected and evaluated for antitubercular activity and cytotoxicity using
Vero, THP-1 and HepG2 cell lines with 4.3%, 4.2% and 2.7% hit
rates, respectively. We demonstrate that models incorporating
antitubercular and cytotoxicity data in Vero cells can significantly enrich
the selection of non-toxic actives compared to random selection.
Across all cell lines, theMolecular Libraries Small Molecule Repository
(MLSMR) and cytotoxicity model identified ~10% of the hits in the

top 1% screened (>10 fold enrichment). We also showed that
seven out of nine Mtb active compounds from different academic
published studies and eight out of eleven Mtb active compounds
from a pharmaceutical screen (GSK) would have been identified by
these Bayesian models.
Conclusion Combining clustering and Bayesian models repre-
sents a useful strategy for compound prioritization and hit-to lead
optimization of antitubercular agents.

KEY WORDS bayesianmodels . clustering . Collaborative
Drug Discovery Tuberculosis database . dual-event models .
function class fingerprints . lead optimization .Mycobacterium
tuberculosis . tuberculosis

INTRODUCTION

Research targeted toward the identification of small molecule
inhibitors ofMycobacterium tuberculosis (Mtb), the causative agent
of tuberculosis (TB), has more recently focused on whole-cell
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phenotypic screening (1–6). Even though effective treatments
have been approved for drug-sensitive infections, an urgent
need exists for next generation drugs (7,8) to address rising
drug resistance for a disease that infects approximately one-
third of the world’s population and kills 1.7–1.8 million people
annually (9). Key to this effort has been research on new drugs
that would significantly decrease treatment time of drug-
sensitive TB from its current 6–9 month regimen (7,8).
Although many laboratories have screened libraries number-
ing 103–106 compounds (4,5), the hit rate is usually below 1%
(2,3) as typically seen in many other high-throughput screen-
ing (HTS) (2,3,10,11) campaigns for TB as well as other
therapeutic indications (10–12). Occasionally the hit rate can
reach the low single digits (~1.7–5%) (4–6). These TB HTS
efforts are delivering interesting and potentially promising hits
(albeit at great cost, Table I), and in excess of a thousand
actives may be deserving of follow-up. Hit-to-lead optimiza-
tion must be properly balanced with continuing efforts to
screen even larger compound libraries to more thoroughly
cover chemical space and/or sample different experimental
conditions to better mimic human TB infection (13).

The large number of hits for hit-to-lead optimization
coupled with limited resources can benefit from established
and highly efficient computational methods to expedite evolu-
tion of novel antitubercular lead compounds for clinical devel-
opment. We and others (14–22) have suggested that computa-
tional approaches can assist in identifying compounds with
activity against Mtb (20) and, in particular, Bayesian classifica-
tion models are valuable (16–19,23). More recently, we have
described dual-event models that combineMtb growth inhibi-
tion activity and cytotoxicity data to improve selection of
actives with antitubercular activity (measured by IC90 – the
concentration of compound inhibiting bacterial growth by
90%) less than 10 μg/mL (or 10 μMdepending on the original
chemical library format and dataset) and a selectivity index (SI
= CC50/IC90 where CC50 = concentration of compound
inhibiting growth of a cultured mammalian cell line, Vero
cells, by 50%) greater than ten (22). We demonstrated using
data from multiple laboratories that there are clear benefits of
this approach: computational screening of 82,403 commercial-
ly available small molecules predicted 550 actives, which were
assayed to identify 124 hits (22.5% hit rate) in one study (24),
while another study computationally screened >13,000 mole-
cules, assayed seven predicted actives and found five hits em-
pirically (71% hit rate) (22).

We hypothesized that the Bayesian model technology could
also positively impact hit-to-lead optimization. This phase of
drug discovery is a significant driver of both process time and
cost, typically entailing the design, synthesis, and biological
evaluation of hundreds to thousands of compounds (25). A
computationally-enhanced approach would expand the chem-
ical space explored given the potentially unrestricted querying
of commercial libraries for follow-up compounds and/or hit

substituents derived from reactive building blocks. At the same
time, this in silico approach could enable the efficient selection
of a significantly smaller set of compounds for testing through
the prioritization of analogs by their Bayesian score, which, in
general, scales with the likelihood of activity. The following
study describes the benefits of implementing Bayesian dual-
eventmodels in conjunction with the commonly used approach
of hit structure clustering followed by the expansion of chem-
ical space around core cluster scaffolds through commercial
analog selections (26,27) (Fig. 1). We also note how different
mammalian cell types utilized in cytotoxicity determination
can impact the rate at which active analogs are found.

MATERIALS AND METHODS

Small Molecules

Small molecules for biological assay were purchased from Life
Chemicals (Ontario, Canada) and ChemBridge (San Diego,
CA).

CDD Database and SRI Datasets

The development of the CDD TB database (Collaborative
Drug Discovery Inc. Burlingame, CA) has been previously
described (17). The Tuberculosis Antimicrobial Acquisition
and Coordinating Facility (TAACF) and Molecular Libraries
Small Molecule Repository (MLSMR) screening datasets (4–6)
were collected and uploaded in CDD TB from sdf files and
mapped to custom protocols (28). All of theseMtb datasets used
in model building are available for free public read-only access
and mining upon registration in the CDD database (18,28–30),
making them a valuablemolecule resource for researchers along
with available contextual data on these samples from other non
Mtb assays. These datasets used previously for modeling are also
publically available in PubChem (31). All data generated in this
study (TB: ARRA) is available in the CDD TB database
(Collaborative Drug Discovery, Burlingame, CA) (28).

Compound Selection and Clustering

Active compounds from previous H37Rv screens of the
MLSMR, TAACF datasets and the kinase library from
LifeChemicals (totaling ~4000 dose–response hits) have been
clustered to identify common core scaffolds and analog series
present among actives, as described previously (4–6). For
cluster analyses a hierarchical clustering method implemented
in LeadScope (LeadScope, Inc. Columbus OH.) was used
applying default parameters. Clusters were separated using
the ‘Complete Linkage (Furthest Neighbor)’ method with the
cluster threshold distance set to 0.7. Each cluster may be
characterized by a cluster scaffold that is a common core
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Table I Scoring Recent Mtb Hits from High-throughput Screens with Dual-event Bayesian Models (Bold Text = Predicted Active)
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structure shared by all of its members. Clusters were also
prioritized based on an enrichment ratio computed for each
cluster, defined as the ratio of the percentage of compounds
containing the cluster scaffold within the active (clustered) set
and the percentage of such compounds within the entire
library. High enrichment ratios are associated with structural
motifs preferred among actives compared to primary screened

compounds. Clusters with enrichment ratios below a specified
threshold were excluded from further consideration; for the
MLSMR and Chembridge datasets we used the threshold of
ten and for the kinase library themore permissive value of five.
We obtained 22, 29 and 26 conformational clusters corre-
sponding to MLSMR, Chembridge and kinase library dose–
response datasets, respectively. Out of these clusters, 30 cluster

Table I (continued)
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scaffolds were selected for follow-up by expanding variation
around the core scaffold structures and potential SAR versus
Mtb through the selection of analog series from commercial
sources. Out of cluster scaffolds obtained from clustering dose–
response hits from all three screens (MLSMR, TAACF datasets
and the kinase library) totaling close to 4000 compounds, we
selected 30 cluster scaffolds that were well represented among
commercially available compounds. Analog compounds ex-
ploring chemical diversity around these 30 cluster scaffolds
were selected from the Chembridge and Life Chemicals com-
mercial libraries. Commercial compounds identical to any
primary screened compounds were excluded except those that
show inhibition of >80% in primary screens but were not tested
in dose–response. The final selection included 1847

compounds is described by the selected 30 major clusters out
of which large clusters may be further grouped into sub-
clusters, totaling 55 sub-clusters/clusters (or 30 major clusters).
We also chose to add an additional cluster of 12 analogs (based
on a designed ‘hybrid’ cluster scaffold) and 65 diverse com-
pounds, totaling 1924 purchased from the aforementioned
vendors.

Bacterial Strain, Growth Conditions and Media

MtbH37Rv (ATCC 27294) was obtained from the American
Type Culture Collection (Manassas, VA). To prepare perma-
nent frozen stocks, H37Rv was grown as five mL subcultures
(50 mL conical tubes, 36–37°C) in Middlebrook 7H9 broth

Fig. 1 Schematic illustrating the
integrated in vitro and computational
processes described in this study.
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(Becton Dickinson) supplemented with 0.2% glycerol (Becton
Dickinson), 0.05% Tween 80 (Becton Dickinson), and 10%
ADC enrichment (albumin, dextrose, catalase; Becton
Dickinson). The subculture was mixed periodically and used to
inoculate (5% inoculum) a second subculture (30 mL in 250 mL
screw cap flask) when the turbidity reached a density similar to a
#1 McFarland turbidity standard (A600 nm ~0.2). The subcul-
tures were incubated with periodic mixing for 18–21 days until
the turbidity reached a #3–#4 McFarland turbidity standard
(A600nm ~0.6–0.8, 4–8×107 CFU/mL). The caps on both the
conical tubes and flasks were loosened and wrapped in parafilm
to allow for adequate gas exchange and to prevent evaporation
during incubation. Prior to harvest, samples from all cultures
were spotted onto Trypticase Soy Agar (TSA) plates and incu-
bated for 3–4 days to check for contamination.Mtb grows poorly
on TSA which supports the growth of most potential contami-
nating microorganisms. Each culture was then transferred to a
50mL tube and allowed to settle at ambient temperature for one
h. The upper half of each culture was aspirated and pooled in a
flask. Aliquots of 1 mLwere then transferred to twomL cryovials
and frozen at −80°C. At least three frozen stocks were thawed
and used to determine the viable count by plating dilutions,
prepared in supplemented 7H9 broth, onto Middlebrook
7H11 Agar followed by incubation for up to 21 days. A contam-
ination check on the thawed cultures was also performed as
described above.

Mtb Assay

Primary screening against replicating cultures ofMtbwere deter-
mined using modifications to the microplate Alamar Blue assay
(MABA (32,33)) as previously published (4). This assay is widely
used for HTS screening by many laboratories as recently docu-
mented (34). Antitubercular activity was determined againstMtb
H37Rv ATCC 27294 following 7 days incubation with test
compounds. Compounds were evaluated initially in a stacked-
plate dose response and final test concentrations for the com-
pounds ranged from 100 μM to 0.0195 μM in two-fold dilutions
with a final DMSO concentration of 1.0%.

Cytotoxicity in VeroCells of Compounds that InhibitMtb

Cytotoxicity for Vero cells (ATCC CCL-81) was determined
following 72 h exposure (33). Cell viability was assessed using
CellTiter-Glo reagent (Promega) according to the manufac-
turer’s protocol.

Cytotoxicity in THP-1 Cells of Compounds that Inhibit
Mtb

This functional assay was developed for detection of compounds
inhibiting THP-1 cells viability as a secondary screen to theMtb
bactericidal assay. The THP-1 cell line was chosen as a

representative peripheral blood monocyte. In this assay, we
treated THP-1 cells with compounds selected as “hits” in the
Mtb assay over a 10 point 2-fold dilution series, ranging from
40 μM to 0.078 μM. Following 72 h of treatment, relative viable
cell number was determined using Cell Titer Glo fromPromega.
Each plate contained 64 replicates of vehicle treated cells which
served as controls. THP-1 cells were sub-cultured every 7 days in
RPMI 1640 with 10% fetal bovine serum, incubated at 37°C in
5% carbon dioxide. Cells were passaged as needed, harvested
from flasks using 0.25% trypsin-EDTA and maintained for no
more than 20 passages. Compounds and carrier controls were
diluted in complete growth medium to prepare a 6× concentrat-
ed dosing solution which was dispensed into 384-well black clear-
bottom tissue culture treated plates (5 μL volume). The final
DMSO concentration for this assay was 0.4%. Cells were
harvested as previously described. Twenty microliters of com-
plete growth medium containing 3000 cells were dispensed per
well. Plates were incubated at 37°C, 5% CO2 for 72 h prior to
endpoint detection. At the end of the treatment period, assay
plates were removed from the incubator and equilibrated to
room temperature for 10 min. Twenty-five μL of Cell Titer
Glo reagent was added and plates were incubated for an addi-
tional 10 min in the dark. At the end of the incubation, assay
plates were analyzed using a PerkinElmer Envision microplate
reader in luminescence mode with an integration time of 0.1 s.

Cytotoxicity in HepG2 Cells of Compounds that Inhibit
Mtb

This functional assay was developed for detection of com-
pounds inhibiting HepG2 cells viability as a secondary screen
to the Mtb bactericidal assay. In this assay, HepG2 cells were
treated with compounds selected as “hits” in the Mtb assay for
72 h over a 10 point 2-fold dilution series, ranging from 20 μM
to 0.39 μM. Following the incubation, the relative viable cell
number was determined using Cell Titer Glo (Promega). Each
plate contained 32 replicates of vehicle treated cells which
served as negative controls and 32 wells of 100 μM hyamine-
treated cells that represent a positive control. The maintenance
of the HepG2 cells followed the recommendations of the
ATCC. Cells were passaged as needed, harvested from flasks
using 0.25% trypsin-EDTA and maintained for no more than
20 passages. On the day of the assay, compounds or carrier
control (DMSO) were diluted to 6X in complete growth me-
dium supplemented with 1% Penicillin/Streptomycin and
5 μL was dispensed into 384-well black clear-bottom tissue
culture treated plates using a Biomek FX. The DMSO con-
centration was maintained at 0.2% final concentration. A 10
point 2-fold serial dilution was generated in the “stacked plate”
method previously published by this group (4). The HepG2
cells were harvested as previously indicated and the concentra-
tion was adjusted to 1.5×105 cells/mL in complete growth
medium supplemented with 1% Penicillin/Streptomycin.
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Using a Matrix WellMate in a certified biosafety cabinet,
twenty microliters or approximately 3000 cells were dispensed
to each well in the 384-well plate. The plates were then incu-
bated at 37°C, 5% CO2 for 72 h prior to endpoint detection.
Following the 72 h incubation period, the assay plates were
equilibrated to room temperature for 10 min and twenty-five
microliters of Cell Titer Glo reagent (Promega) was added to
each well using a WellMate (Matrix, Hudson, NH). The plates
were then incubated for an additional 10 min at room temper-
ature. At the end of the incubation, luminescence was mea-
sured using a Perkin Elmer Envision microplate reader with an
integration time of 0.1 s.

Biological Data Analysis

All data were imported into ActivityBase (IDBS) data manage-
ment system for analyses and calculation of IC50 and IC90 values.
Percent Inhibition was calculated as: 100× (1-(Median of Test
Compound–Median of Positive control)/Median of Negative
control – Median of Positive control)). Selectivity Index (SI) was
calculated as SI = CC50/IC90, where CC50 = concentration of
compound inhibiting growth of cultured cells by 50%.

Using Dual Event Machine Learning Models with Novel
Bioactivity and Cytotoxicity Data

We have previously described the generation and validation of
the Laplacian-corrected Bayesian classifier models developed
with cytotoxicity data to create Mtb dual-event models (22,24)
using Discovery Studio (16,35–38). These models (22,24) were
developed based on: a. MLSMR dose response and cytotoxicity;
b. CB2 dose response and cytotoxicity; and c. TAACF Kinase
dose response and cytotoxicity, where cytotoxicity was deter-
mined in Vero cells for each set. All three models were generated
using standard protocols using the following molecular descrip-
tors: molecular function class fingerprints of maximum diameter
6 (FCFP_6) (39), AlogP, molecular weight, number of rotatable
bonds, number of rings, number of aromatic rings, number of
hydrogen bond acceptors, number of hydrogen bond donors,
andmolecular fractional polar surface area were calculated from
input sdf files. Models were validated using leave-one-out cross-
validation in which each sample was left out one at a time, a
model was built using the remaining samples, and that model
utilized to predict the left-out sample. Each model was internally
validated and receiver operator characteristic (ROC) plots gen-
erated, and the cross-validated ROC area under the curve (XV
ROC AUC) calculated. All models generated were additionally
evaluated by leaving out 50% of the data and rebuilding the
model 100 times using a custom protocol for validation, to
generate the ROCAUC, concordance, specificity and selectivity
as described previously (22,24). The three models were used in
this study to score a set of 1924 commercial analogs that expand
the selected 30 major clusters (or 55 sub-clusters/clusters)

obtained from cluster analyses of these screens. The set of 1924
compounds have been evaluated in dose–response in whole cell
Mtb assay and Vero, THP-1 and HepG2 cytotoxicity assays.
Defining non-toxic actives those that possess IC90<10 μg/ml
and SI>10, we obtained 82, 81 and 52 non-toxic Mtb actives
based on Vero, THP-1 and HepG2 cytotoxicity data sets, re-
spectively. The prediction data were evaluated using aROCplot
and also with standard statistics (sensitivity, specificity, prediction
accuracy and Matthews correlation).

Further Retrospective Evaluation of Dual Event
Machine Learning Models

The previously developed dual-event Mtb and cytotoxicity
models (22,24) were further evaluated using a set of nine
molecules collated from recent academic Mtb HTS studies
(Table I) as well as eleven hit molecules from GSK (Table II)
(40). These molecules were sketched using the mobile appli-
cation Mobile Molecular DataSheet (Molecular Materials
Informatics, Montreal, CA) (41,42) to create sdf files which
were used in Discovery Studio for prediction with the
Bayesian models.

RESULTS

Hierarchical Clustering of Actives from Three Previous
Antitubercular Screens

Dose response hit compounds from three previous antitubercular
screens (4–6) of the MLPCN (MLSMR), TAACF (Chembridge)
and the Life Chemicals kinase libraries were pooled and clus-
tered to identify common core scaffolds and analog series present
among actives, as described previously (Fig. 2) (4–6). The pool of
clustered compounds consisted of dose–response hits from the
Chembridge and kinase libraries with IC90<10 μg/mL and
additionally we chose to include all dose–response hits from the
MLSMR screen, totaling close to 4000 hits that were included
for cluster analysis (see “Materials and Methods”). Within these
4000 hits 737 compounds satisfy the criteria of IC90<10 μg/mL
and SI (Vero cells) >10, however we chose to use this larger,
more inclusive set for the purposes of conformational clustering.
The enrichment of cluster scaffolds among actives was assessed
through the computation of cluster enrichment ratios, as de-
scribed in detail under the “Materials and Methods”. Briefly,
only cluster scaffolds represented as ‘enriched’ among dose–
response hits compared to primary screening libraries were
considered for the selection of commercial analogs. Based on
the scaffolds shown in Fig. 2 a total of 1924 commercially
available compounds were selected to explore the chemical space
and Mtb SAR around these cluster scaffolds. As also shown in
Fig. 2, large clusters have been grouped into sub-clusters, totaling
55 sub-clusters/clusters (or 30 major clusters, Table III) and an
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additional cluster (Cluster 28) was also added based on a
designed ‘hybrid’ substructure.

In Vitro Screens for Growth Inhibition of Mtb
and Cytotoxicity

The selected 1924 commercial compounds were tested in vitro
for growth inhibition of Mtb and cytotoxicity versus three

distinct mammalian cell lines: THP-1, Vero and HepG2.
For each cell line used for cytotoxicity assessment, SI values
have been calculated as the ratio of CC50 determined in each
cytotoxicity assay and the antitubercular IC90 activity (aver-
aged over three runs). Defining non-cytotoxic Mtb actives as
possessing IC90<10 μg/ml and SI>10, out of the 1924 com-
mercial compounds 82, 81 and 52 molecules satisfy the
criteria of non-cytotoxic actives in Vero, THP-1 and HepG2
cells, respectively (Table S1). These numbers represent ‘hit
rates’ of 4.3%, 4.2% and 2.7% for the three cytotoxicity cell
lines, retrospectively. The use of a more stringent efficacy
and/or SI cutoff would naturally decrease the hit rate and
be useful for exploring in hit evolution.

Bayesian Machine Learning for Hit-to-Lead
Optimization

An alternate approach to expanding on the diversity of these
~4000 screening actives, while also seeking to enhance their
antitubercular growth inhibition and SI values, relies on our
recently published dual-event Bayesian machine learning.
These models have been educated through learning which
compound physiochemical and structural features are consistent
with activity and promising SI. Importantly, the models have
been validated through retrospective enrichment studies with
published screening datasets as well as prospective prediction of
actives from a GlaxoSmithKline antimalarial library (22). We
have also utilized the dual-event models to score nine recently
published hits from Mtb whole-cell screening campaigns
(Table I) that were derived after our dual-event models were
built. Using the panel of three Bayesian models, we would have
identified seven of nine of the molecules as actives. Interestingly,
the maximal Tanimoto similarity using MDL keys and the
MLSMR dose response and cytotoxicity model dataset was
quite high (range 0.64–0.82) and yet the model only correctly
identified two molecules. The TAACF-CB2 dose response and
cytotoxicity model alone performed better with these molecules
in this case and alone would have selected five of the nine
compounds. Similarly, a second test dataset of 11 active mole-
cules that were tabulated in a paper describing the HTS of two
million compounds performed by GSK (40) against Mtb was
analyzed, and at least one of the three models predicted eight of
the compounds as hits (Table II). These results highlight the
need for further studies to comprehend what model factors
influence predictive value, or whether the utilization of a con-
sensus scoring approach with our dual-event Bayesian models
could further enhance their ability to pick actives.

The dataset of 1924 molecules selected by clustering was
virtually screened with our current three previously generated
dual-event Mtb and cytotoxicity models. The molecules were
ranked using the classification from all three models, and the
receiver operator curve plot was generated (Fig. 3). The
MLSMR dose response and cytotoxicity model appeared to

Table II Scoring Mtb Hits from GSK High Throughput Screen with Dual
Event Bayesian Models (Bold Text = Predicted Active)
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Fig. 2 Cluster scaffolds of MDR TB DR hits following hierarchical clustering as described in the “Materials and Methods”.
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perform the best at identifying the active compounds and
scoring them highly. This is exemplified by the MLSMR
and cytotoxicity model identifying ten active molecules
(~12%) in the top ranked 20 molecules (~1% of the entire

dataset) when using the Vero cell cytotoxicity dataset. With
random screening of the molecules, we would have expected
less than one active (at the 4.3% hit rate empirical hit rate with
the Mtb and Vero cell screens) (11.8 fold enrichment). For
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THP cells nine actives were in the top 20 molecules (10.7 fold
enrichment). For HepG2 cells six actives were in the top 20
molecules (11.1 fold enrichment), however there were also
fewer actives in this cell line. The TAACF Kinase dose re-
sponse and cytotoxicity model has shown enrichments from
6.7 to 11.1 fold in the top 1% while the CB2 dose response
and cytotoxicity model consistently performed poorly in all
cell lines (Fig. 3, Tables IV, V andVI). Based on earlier studies

Table III Number of Cluster Members Listed for Each Cluster That Contain
at Least One (Or More) Non-toxic Active Cluster Member, Defined as
Showing Activity Against Mtb. with IC90 (Averaged Over Three Runs)
<10 Μg/mL While Possessing A Selectivity Index (SI) > 10 In Any One
Out of the Three Cytotoxicity Assays (Vero, THP-1, HepG2 Cell Lines). for
Each Cluster the Numbers of Compounds Are Listed As Follows: Total
Number Per Cluster (‘Total’), Dose–response Actives with IC90<10 μg/mL
(‘DR-A’), And Non-toxic Actives As Defined Above (‘NT-A’). Cluster Scaffold
Structures of the Listed Clusters Are Shown in Fig. 2. Note, to Avoid
Duplicate Listings of the Same Compound, Compounds That Belong to
Multiple Clusters Are Counted Once, in the First Listed Cluster Only
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Fig. 3 Results for the 1924 compounds tested from the ChemBridge and
Life Chemicals libraries screened for whole-cell TB activity and predicted with
dual-event Bayesian models shown as receiver operator characteristic curves.
The random rate is based on the empirical HTS hit rate; MLSMR+cytotox is
based on the MLSMR dose response and cytotoxicity model; CB2 + cytotox
is based on the CB2 dose response and cytotoxicity model. Kinase+cytotox is
based on theMLSMR dose response and cytotoxicity model. The best curve is
based on a 100% hit rate. (a). Vero cells, (b). THP cells, (c) HepG2 cells.
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(17,18) we have focused on how the models enrich the top
ranked molecules (top 1%) as this would suggest that we could
screen a much smaller fraction of a library. In other applica-
tions it is advantageous to consider a larger percentage e.g. the
top 10%, as well as use multiple models for compound selec-
tion. We would still observe a considerable enrichment over
random as approximately 50% of the actives are identified by
the MLSMR and cytotoxicity and TAACF Kinase dose re-
sponse and cytotoxicity models, while random screening
would have delivered only 10% of the hits (5 fold enrichment,
Fig. 3). Retrospectively, out of the three Bayesian models
developed based on the MLSMR, CB2 and kinase library
dose–response screens and cytotoxicity counter screens we
found that the MLSMR-based model predicted the identity
of actives out of the 1924 compound set most accurately,
outperforming the kinase library based model, while the
CB2 dataset-based model did not perform much better
than random selection. These findings are illustrated in Fig. 3
and also reflected in the number of true positives and predic-
tion accuracy (Tables IV, V and VI). These findings also
underline the usefulness of applying multiple computa-
tional models to predict activity/toxicity since in typical
applications it is not known a priori which model may perform
better.

DISCUSSION

With the advent of antibacterial screening and chemotherapy
in the early twentieth century, rapid advances led to a variety
of new antibacterial agents. Research from the 1940’s–1960’s
led to current tuberculosis treatments (e.g., streptomycin, iso-
niazid and rifampicin) via the design and synthesis of small
numbers of compounds (100’s per program) and their

assessment in in vitro and in vivo models. Unfortunately,
disease-focused research often occurs in spurts depending on
perceived public health threat, pharmaceutical market size,
and available funding. This phenomenon is best exemplified
by the hunt for a cure for tuberculosis, caused by one of
humankind’s oldest pathogens – Mtb. With the rapid devel-
opment of effective antitubercular agents, the notion devel-
oped that tuberculosis would be eradicated worldwide, and
this perception led to a reduction in efforts to maintain the
tuberculosis research infrastructure, particularly the capabili-
ties needed to drive new drug discovery. Beyond the incred-
ible magnitude of eradicating this disease worldwide, the
realities of treating latent disease and more recently resistant
forms of tuberculosis have strained the public health infra-
structure and led to the realization that new sources of drugs
will continually be needed in order to simply contain the
disease. The acute need for new faster acting therapies not
subject to current drug-resistant strains is being partially
addressed through large-scale renewed screening efforts much
like those established in the 1940’s. Due to the advent of
modern technology and HTS, millions of compounds can
and have been screened for antitubercular efficacy under dif-
ferent metabolic conditions representing models of various
states of human infection. Specific target-based screening of
large synthetic libraries was found to be a relatively ineffective
approach to antibacterial drug discovery due to a variety of
reasons including bacterial permeability (43). On the other
hand, whole-cell phenotypic screens suffer from the disadvan-
tage of being target agnostic making compound optimization
and selectivity problematic. In spite of these issues, recent large-
scale phenotypic (4–6) HTS and computational- assisted HTS
(22,24) screens againstMtb have identified thousands of poten-
tial hit compounds. Our challenge is now to follow up on these
data in a timely and efficient manner as described herein.

Table IV Model Statistics for Predictions Made with the Set of 1924 Follow Up Compounds Using Vero Cells for Cytotoxicity

Model True positive True negative False positive False negative Sensitivity Specificity Prediction
accuracy

Matthews
correlation

MLSMR dose response and cytotoxicity 66 1294 548 16 80 70 70.7 0.20

CB2 dose response and cytotoxicity 56 695 1147 26 68 38 38.7 0.02

TAACF Kinase dose response and cytotoxicity 59 1208 636 21 74 66 65.8 0.16

Table V Model Statistics for Predictions Made with the Set of 1924 Follow Up Compounds Using THP Cells for Cytotoxicity

Model True
positive

True
negative

False
positive

False
negative

Sensitivity Specificity Prediction
accuracy

Matthews
correlation

MLSMR dose response and cytotoxicity 62 1291 552 19 77 70 70.3 0.20

CB2 dose response and cytotoxicity 52 692 1151 29 64 38 38.7 0

TAACF Kinase dose response and
cytotoxicity

53 1201 642 28 65 65 65.2 0.13
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Our prior studies have demonstrated that dual-event
Bayesian machine learning models can enrich hit discovery
(22,24). Using public Mtb screening data as a whole (actives
and inactives) can enable us to makemore effective decisions to
identify active compounds. Our Bayesian models also indi-
rectly take into account both uptake and activity against a
growth-relevant target, making use of positive and negative
information. This empirical, activity-based approach derived
from large sets of screening results may be a useful and rapid
alternative to other methods for predicting bacterial perme-
ability, such as MycPermCheck which requires five molecular
descriptors to be calculated (44).

As we see an increase in academic-industry collaborations
around HTS such as the TB Drug Accelerator (45) screening
for compounds active against Mtb, it is likely that the number
of hits in the literature will only increase. Efforts to follow up
on these compounds will create a bottleneck, perhaps similar
to what we have seen with the wealth of antimalarial screening
data (46). Therefore, the approach (Fig. 1) we propose of using
the dual-event Bayesian classifiers to assist in selection of
follow-up compounds would seem a natural progression,
learning from all the data generated previously. Considering
the tight research budgets and likely reductions in government
supported tuberculosis drug discovery, it may be in the best
interests of the academic research community to more widely
employ these proven computational methods that are used in
pharmaceutical company drug discovery programs, in order
to accelerate progress. The potential for sharing the Mtb
models derived from published literature (as used in this and
previous studies (22,24)) could quickly impact these efforts.

As an example we have demonstrated that assessment of
compounds suggested by four academic groups and GSK
from the literature as Mtb hits represents (in the absence of
their entire screening libraries) one way to determine whether
the three Mtb Bayesian dual-event models would have classi-
fied them as actives (Tables I and II). Seven out of the nine
(78%) academic screening derived compounds were identified
by at least one model (Table I) and eight out of eleven (73%)
compounds in the dataset from GSK (Table II). While we do
not have access to the complete screening libraries used by
these groups (ranging from tens of thousands to two million
compounds) to do a complete assessment, predictions on their
published hits may be instructive. Extension of such retrospec-
tive analysis is likely optimistic but it does suggest the benefits of

using multiple models likely to cover a broader chemical space.
Frequently, we have seen multiple Bayesian models perform
differently with different datasets (17–19,22,24) and the current
study using nearly 2000 compounds selected by clustering, is no
exception. The CB2 and cytotoxicity model performed better
with the literature compounds (Tables I and II) than with the
1924 compounds derived from clustering (Tables IV, V and
VI, Fig. 3). This result may be a reflection of the diversity of the
respective training sets for each model (compared to the test
compounds), and, as we have seen previously, one of the
models performed well in selectingMtb active compounds from
a library of antimalarial compounds (22). At the very least this
result suggests that large libraries of compounds screened
against Mtb can be used to generate Bayesian models (that
incorporate activity and cytotoxicity information obtained in
previous screens) to improve the selection of compounds for
subsequent screening sets that are enriched in non-toxic actives.
Full release of the large GSK dataset of twomillion compounds
should allow significant improvement of these computational
models, but results for the currently available 11 compounds
prominently described in the paper suggest the models are
performing well for hit to lead optimization and in line with
our own data from previous studies (22,24).

Bayesian classification models have been applied for identify-
ing antibacterials in retrospective testing with 1–2 fold enrich-
ments (23) and thus could have broader applicability than just
finding compounds active against Mtb. In addition, Bayesian
classification methods have also been used for ADME/Tox
models (36,47–49). Thus, using Bayesian models for hit follow-
up outside ofMtb is worthy of further exploration. Limitations of
using such models based on whole cell data are that there is of
course no information on a target or SAR for a target, although
this may not be necessary for further pursuit of a lead.

Interestingly, data derived with different cell types for
cytotoxicity does suggest the benefits of using more than one
cell line, as different cells appear to have different sensitivities
based on the variation in hit rates observed. Fewer actives
were present in HepG2 cells than Vero and THP-1, respec-
tively. We are not aware of any discussion of such differences
with or without mechanistic underpinning, although others
have used many cell types to derive general cytotoxicity
models (49). It could reflect expression of metabolizing en-
zymes involved in molecule activation versus detoxification,
transport differences (import/export) or other possibilities.

Table VI Model Statistics for Predictions Made with the Set of 1924 Follow Up Compounds Using HepG2 Cells for Cytotoxicity

Model True
positive

True
negative

False
positive

False
negative

Sensitivity Specificity Prediction
accuracy

Matthews
correlation

MLSMR dose response and cytotoxicity 39 1297 575 13 75 69 69.4 0.15

CB2 dose response and cytotoxicity 36 705 1167 16 69 38 38.5 0.02

TAACF Kinase dose response and cytotoxicity 35 1211 661 17 67 65 64.76 0.11
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Some have compared the use of cardiac, hepatic and kidney
derived cell lines at predicting compounds specific to each
organ and found similar cytotoxicity across all cell types (50). It
should also be noted in this study that we have used models
incorporating only Mtb activity and cytotoxicity and have not
tried to directly account for absorption, distribution, metabo-
lism and excretion properties. A panel of models for different
bacteria using different cell types for cytotoxicity could also be
helpful for scoring potential compounds for follow up, to
understand selectivity versus broad spectrum action and
multi-targeting. As illustrated in Fig. 3 and also reflected in
model statistics (Tables IV, V and VI) the MLSMR and Vero

cytotoxicity based model performs well in the selection of non-
toxic actives out of the set of 1924 compounds, with a predic-
tion accuracy close to 70% using each of the three cytotoxicity
datasets. The model developed based on the kinase library
performed close to 65% with each of the three cytotoxicity
datasets. The CB2 model performed relatively poorly as ap-
plied to the set of 1924 compounds. Out of clusters represent-
ed in the 1924 compound set cluster scaffolds containing at
least one or more non-cytotoxic active hits are listed in
Table III. While the CB2 compound set utilized in the devel-
opment of the CB2 model was lacking cluster 1 members (and
its sub-clusters), all other clusters were represented

Table VII Compounds That Were Active and with Selectivity Index (SI) > 10 Across All Three Cell Lines Along with Dual-event Bayesian Model Predictions
(Bold Text = Predicted Active)
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Table VII (continued)
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Table VII (continued)
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Table VII (continued)
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Table VII (continued)
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equivalently or better compared to the MLSMR or the kinase
set. Out of the three sets, the kinase library set wasmost under-
represented in non-cytotoxic active scaffolds listed in Table III
and yet performed well for the prediction of non-cytotoxic
active compounds out of the set of 1924. In the case of a new
(unknown) set of compounds, it is likely the best results may be

achieved through the application of all three models followed
by pooling top scoring compounds from each model. Non-
cytotoxic actives identified in this study are distributed over a
number of clusters as shown in Table I. Core scaffolds
shared among cluster members are related among sub-
clusters. Among the less desirable are clusters that

Table VII (continued)

432 Ekins et al.



contain many evaluated or active compounds but only
one (or few) non-cytotoxic active(s) such as sub-clusters
1e, 1i or 2a, d, g.

From the screen of 1924 compounds there were 33
compounds that met the bioactivity and selectivity
criteria for all three cell lines (Table VII). Twenty seven
of these compounds had been predicted as active with
the MLSMR dose response and cytotoxicity Bayesian
model. Twenty two were predicted active with the CB2 dose
response and cytotoxicity Bayesian model while 23 were pre-
dicted active with the TAACF kinase dose response and
cytotoxicity Bayesian score. AB00952642 is the most active
compound out of these based on the IC90 (0.63 μM and
0.2 μg/ml). Noteworthy is the observation that AB00953420
and AB00953487 share the tetrahydropyrazolopyrimidine
carboxamide common to potent antitubercular agents recent-
ly disclosed by both GlaxoSmithKline (51) and the Novartis
Institute for Tropical Diseases (52) as well as resembling
previous active compounds identified in our own laboratories
(22,24). Many of the other compounds in Table VII also
represent promising starting points for drug discovery
optimization.

In summary, we have shown how computational ap-
proaches such as hierarchical clustering and Bayesian models
could be used to assist human decision making in hit follow up
for Mtb. Three Bayesian models have been developed based
on Mtb dose–response activity and cytotoxicity datasets
obtained for three previously screened libraries. We applied
these models retrospectively for the prediction of actives out of
a set of 1924 commercial compounds. The latter set consists of
commercial analogs exploring chemical diversity around clus-
ter scaffolds obtained from conformational clustering of the
three previously screened libraries. The set of 1924 com-
pounds was evaluated for antitubercular activity and cytotox-
icity in three cell lines resulting in the identification of 82, 81
and 52 non-cytotoxic active compounds (IC90<10 μg/ml and
SI>10) using Vero, THP-1 and HepG2 cytotoxicity results,
respectively. The selection of the 1924 commercial com-
pounds was based on cluster scaffolds of dose–response hits
from previous screens, followed by chemical diversity selection
for clusters with large numbers of commercially available
compounds. Compared to this strategy the current study
demonstrates that the selection of such new sets of compounds
may be achieved more effectively through the application of
Bayesian models incorporating available antitubercular activ-
ity and cytotoxicity datasets. Multiple dual-event Bayesian
models can increase the enrichment of non-cytotoxic actives
in the top 1% of compounds to greater than tenfold and thus
decrease the number of compounds purchased and tested. For
example the application of ourMLSMRmodel onto the 1924
compounds chosen by standard clustering (using the Vero
cytotoxicity dataset) achieved an 11.8-fold enrichment of non-
cytotoxic actives in the top 1% compared to random selection.

Ideally the Bayesian models should be used prior to purchasing
and testing of compounds to maximize the number of active
compounds selected. Considering the likely limited budgets for
purchasing follow up active samples for screening, this ap-
proach also allows virtual screening of even larger commercial
databases and the purchase of a small, select set of compounds
for follow-up that will be enriched in active compounds poten-
tially leading to larger numbers of active compounds for mech-
anism of action studies than chemical diversity selection follow-
ing conformational clustering alone. As further examples, the
computational models can also be used to score compounds
already identified by others and may be useful to triage the
overwhelming number of hits and follow up screening set
samples which themselves would consume valuable testing
resources if they were all to be followed up.
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